Home ยป Past Questions ยป Further-mathematics ยป Page 42
862

The angle subtended by an arc of a circle at the centre is \(\frac{\pi}{3} radians\). If the radius of the circle is 12cm, calculate the perimeter of the major arc.

  • A. \(4(6 + 5\pi)\)
  • B. \(4(6 + 2\pi)\)
  • C. \(4(3 + 3\pi)\)
  • D. \(4(3 + 5\pi)\)
View Answer & Discuss WAEC 2013
863

Find the coordinates of the point which divides the line joining P(-2, 3) and Q(4, 9) internally in the ratio 2 : 3.

  • A. \((5\frac{2}{3}, \frac{2}{5})\)
  • B. \((\frac{2}{5}, 5\frac{2}{5})\)
  • C. \((\frac{2}{5}, 2\frac{2}{5})\)
  • D. \((\frac{-2}{5}, 5\frac{2}{5})\)
View Answer & Discuss WAEC 2013
864

Evaluate \(\int_{0}^{2} (8x – 4x^{2}) \mathrm {d} x\).

  • A. \(-16\)
  • B. \(\frac{-16}{3}\)
  • C. \(\frac{16}{3}\)
  • D. \(16\)
View Answer & Discuss WAEC 2013
865

An object is thrown vertically upwards from the top of a cliff with a velocity of \(25ms^{-1}\). Find the time, in seconds, when it is 20 metres above the cliff. \([g = 10ms^{-2}]\).

  • A. 0 and 1
  • B. 0 and 4
  • C. 0 and 5
  • D. 1 and 4
View Answer & Discuss WAEC 2013
866

Given that \(P = \begin{pmatrix} y – 2 & y – 1 \\ y – 4 & y + 2 \end{pmatrix}\) and |P| = -23, find the value of y.

  • A. -4
  • B. -3
  • C. -1
  • D. 2
View Answer & Discuss WAEC 2013
867

Given that \(\frac{\mathrm d y}{\mathrm d x} = \sqrt{x}\), find y.

  • A. \(2x^{\frac{3}{2}} + c\)
  • B. \(\frac{2}{3}x^{\frac{3}{2}} + c\)
  • C. \(\frac{3}{2}x^{\frac{3}{2}} + c\)
  • D. \(\frac{2}{3}x^{2} + c\)
View Answer & Discuss WAEC 2013
868

Find the range of values of x for which \(x^{2} + 4x + 5\) is less than \(3x^{2} – x + 2\)

  • A. \(x > \frac{-1}{2}, x > 3\)
  • B. \(x < \frac{-1}{2}, x > 3\)
  • C. \(\frac{-1}{2} \leq x \leq 3\)
  • D. \(\frac{-1}{2} < x < 3\)
View Answer & Discuss WAEC 2013
869

The fourth term of an exponential sequence is 192 and its ninth term is 6. Find the common ratio of the sequence.

  • A. \(\frac{1}{3}\)
  • B. \(\frac{1}{2}\)
  • C. \(2\)
  • D. \(3\)
View Answer & Discuss WAEC 2013
870

Differentiate \(x^{2} + xy – 5 = 0\).

  • A. \(\frac{-(2x + y)}{x}\)
  • B. \(\frac{(2x - y)}{x}\)
  • C. \(\frac{-x}{2x + y}\)
  • D. \(\frac{(2x + y)}{x}\)
View Answer & Discuss WAEC 2013
871

Find the equation of the line that is perpendicular to \(2y + 5x – 6 = 0\) and bisects the line joining the points P(4, 3) and Q(-6, 1).

  • A. y + 5x + 3 = 0
  • B. 2y - 5x - 9 = 0
  • C. 5y + 2x - 8 = 0
  • D. 5y - 2x - 12 = 0
View Answer & Discuss WAEC 2013
872

Given that \(f(x) = 2x^{3} – 3x^{2} – 11x + 6\) and \(f(3) = 0\), factorize f(x).

  • A. (x - 3)(x - 2)(2x + 2)
  • B. (x + 3)(x - 2)(x - 1)
  • C. (x - 3)(x + 2)(2x -1)
  • D. (x + 3)(x - 2)(2x - 1)
View Answer & Discuss WAEC 2013
873

If \(\alpha\) and \(\beta\) are the roots of the equation \(2x^{2} – 6x + 5 = 0\), evaluate \(\frac{\beta}{\alpha} + \frac{\alpha}{\beta}\).

  • A. \(\frac{24}{5}\)
  • B. \(\frac{8}{5}\)
  • C. \(\frac{5}{8}\)
  • D. \(\frac{5}{24}\)
View Answer & Discuss WAEC 2013
874

If \(\sqrt{x} + \sqrt{x + 1} = \sqrt{2x + 1}\), find the possible values of x.

  • A. 1 and -1
  • B. -1 and 2
  • C. 1 and 2
  • D. 0 and -1
View Answer & Discuss WAEC 2013
875

Find the third term in the expansion of \((a – b)^{6}\) in ascending powers of b.

  • A. \(-15a^{4}b^{2}\)
  • B. \(15a^{4}b^{2}\)
  • C. \(-15a^{3}b^{3}\)
  • D. \(15a^{3}b^{3}\)
View Answer & Discuss WAEC 2013
876

If \(f(x) = x^{2}\)  and \(g(x) = \sin x\), find g o f.

  • A. \(\sin^{2} x\)
  • B. \(\sin x^{2}\)
  • C. \((\sin x)x^{2}\)
  • D. \(x \sin x\)
View Answer & Discuss WAEC 2013
877

Express \(\log \frac{1}{8} + \log \frac{1}{2}\) in terms of \(\log 2\).

  • A. 3 log 2
  • B. 4 log 2
  • C. -3 log 2
  • D. -4 log 2
View Answer & Discuss WAEC 2013
878

Given that \(a^{\frac{5}{6}} \times a^{\frac{-1}{n}} = 1\), solve for n.

  • A. -6.00
  • B. -1.20
  • C. 0.83
  • D. 1.20
View Answer & Discuss WAEC 2013
879

Solve: \(\sin \theta = \tan \theta\)

  • A. 200ยฐ
  • B. 90ยฐ
  • C. 60ยฐ
  • D. 0ยฐ
View Answer & Discuss WAEC 2013
880

A binary operation * is defined on the set of real numbers, R, by \(x * y = x + y – xy\). If the identity element under the operation * is 0, find the inverse of \(x \in R\).

  • A. \(\frac{-x}{1 - x}, x \neq 1\)
  • B. \(\frac{1}{1 - x}, x \neq 1\)
  • C. \(\frac{-1}{1 - x}, x \neq 1\)
  • D. \(\frac{x}{1 - x}, x \neq 1\)
View Answer & Discuss WAEC 2013
881

Express (14N, 240ยฐ) as a column vector.

  • A. \(\begin{pmatrix} -7 \\ -7\sqrt{3} \end{pmatrix}\)
  • B. \(\begin{pmatrix} 7\sqrt{3} \\ 7\sqrt{3} \end{pmatrix}\)
  • C. \(\begin{pmatrix} -7\sqrt{3} \\ -7 \end{pmatrix}\)
  • D. \(\begin{pmatrix} 7 \\ -7\sqrt{3} \end{pmatrix}\)
View Answer & Discuss WAEC 2014
882

Evaluate \(\frac{\tan 120ยฐ + \tan 30ยฐ}{\tan 120ยฐ – \tan 60ยฐ}\)

  • A. \(\sqrt{3} + \sqrt{2}\)
  • B. \(\frac{2}{3}\)
  • C. \(\frac{1}{3}\)
  • D. \(-2\sqrt{3}\)
View Answer & Discuss WAEC 2014