Home ยป Past Questions ยป Further-mathematics ยป Page 49
1009

Given that \(a = i – 3j\) and \(b = -2i + 5j\) and \(c = 3i – j\), calculate \(|a – b + c|\).

  • A. \(\sqrt{13}\)
  • B. \(3\sqrt{13}\)
  • C. \(6\sqrt{13}\)
  • D. \(9\sqrt{13}\)
View Answer & Discuss WAEC 2018
1010

The marks scored by 4 students in Mathematics and Physics are ranked as shown in the table below

Mathematics 3 4 2 1
Physics 4 3 1 2

Calculate the Spearmann’s rank correlation coefficient.

  • A. 0.2
  • B. 0.5
  • C. 0.6
  • D. 0.7
View Answer & Discuss WAEC 2018
1011

Out of 70 schools, 42 of them can be attended by boys and 35 can be attended by girls. If a pupil is selected at random from these schools, find the probability that he/ she is from a mixed school.

  • A. \(\frac{1}{11}\)
  • B. \(\frac{1}{10}\)
  • C. \(\frac{1}{6}\)
  • D. \(\frac{1}{5}\)
View Answer & Discuss WAEC 2018
1012

Evaluate \(\int_{-1}^{1} (x + 1)^{2}\mathrm {d} x\). 

  • A. \(\frac{8}{3}\)
  • B. \(\frac{7}{3}\)
  • C. \(\frac{5}{3}\)
  • D. 2
View Answer & Discuss WAEC 2018
1013

Calculate the standard deviation of 30, 29, 25, 28, 32 and 24.

  • A. 2.0
  • B. 2.8
  • C. 3.0
  • D. 3.2
View Answer & Discuss WAEC 2018
1014

Evaluate \(\int_{\frac{1}{2}}^{1} \frac{x^{3} – 4}{x^{3}} \mathrm {d} x\).

  • A. -5.5
  • B. -2.0
  • C. 2.0
  • D. 5.5
View Answer & Discuss WAEC 2018
1015

Find the stationary point of the curve \(y = 3x^{2} – 2x^{3}\).

  • A. (1, 0)
  • B. (-1, 0)
  • C. (1, 1)
  • D. (-1, -1)
View Answer & Discuss WAEC 2018
1016

The midpoint of M(4, -1) and N(x, y) is P(3, -4). Find the coordinates of N.

  • A. (2, -3)
  • B. (2, -7)
  • C. (-1, -3)
  • D. (-10, -7)
View Answer & Discuss WAEC 2018
1017

Given that \(y = x(x + 1)^{2}\), calculate the maximum value of y.

  • A. -2
  • B. 0
  • C. 1
  • D. 2
View Answer & Discuss WAEC 2018
1018

Find the equation to the circle \(x^{2} + y^{2} – 4x – 2y = 0\) at the point (1, 3).

  • A. 2y - x -5 = 0
  • B. 2y + x - 5 = 0
  • C. 2y + x + 5 = 0
  • D. 2y - x + 5 = 0
View Answer & Discuss WAEC 2018
1019

Express \(\frac{13}{4}\pi\) radians in degrees.

  • A. 495ยฐ
  • B. 225ยฐ
  • C. 585ยฐ
  • D. 135ยฐ
View Answer & Discuss WAEC 2018
1020

If the determinant of the matrix \(\begin{pmatrix} 2 & x \\ 3 & 5 \end{pmatrix} = 13\), find the value of x.

  • A. -2
  • B. -1
  • C. 1
  • D. 2
View Answer & Discuss WAEC 2018
1021

In how many ways can the letters of the word ‘ELECTIVE’ be arranged?

  • A. 336
  • B. 1680
  • C. 6720
  • D. 20160
View Answer & Discuss WAEC 2018
1022

Find the radius of the circle \(x^{2} + y^{2} – 8x – 2y + 1 = 0\).

  • A. 9
  • B. 7
  • C. 4
  • D. 3
View Answer & Discuss WAEC 2018
1023

If \(\sin\theta = \frac{3}{5}, 0ยฐ < \theta < 90ยฐ\), evaluate \(\cos(180 – \theta)\).

  • A. \(\frac{4}{5}\)
  • B. \(\frac{3}{5}\)
  • C. \(\frac{-3}{5}\)
  • D. \(\frac{-4}{5}\)
View Answer & Discuss WAEC 2018
1024

The first term of a Geometric Progression (GP) is \(\frac{3}{4}\), If the product of the second and third terms of the sequence is 972, find its common ratio.

  • A. 3
  • B. 4
  • C. 6
  • D. 12
View Answer & Discuss WAEC 2018
1025

How many numbers greater than 150 can be formed from the digits 1, 2, 3, 4, 5 without repetition?

  • A. 91
  • B. 191
  • C. 291
  • D. 391
View Answer & Discuss WAEC 2018
1026

If \(\begin{vmatrix}  k & k \\ 4 & k \end{vmatrix} + \begin{vmatrix}  2 & 3 \\ -1 & k \end{vmatrix} = 6\), find the value of the constant k, where k > 0.

  • A. 1
  • B. 2
  • C. 3
  • D. 4
View Answer & Discuss WAEC 2018
1027

The general term of an infinite sequence 9, 4, -1, -6,… is \(u_{r} = ar + b\). Find the values of a and b.

  • A. a = 5, b = 14
  • B. a = -5, b = 14
  • C. a = 5, b = -14
  • D. a = -5, b = -14
View Answer & Discuss WAEC 2018
1028

Find the coefficient of \(x^{3}\) in the binomial expansion of \((x – \frac{3}{x^{2}})^{9}\).

  • A. 324
  • B. 252
  • C. -252
  • D. -324
View Answer & Discuss WAEC 2018
1029

Solve \(\log_{2}(12x – 10) = 1 + \log_{2}(4x + 3)\).

  • A. 4.75
  • B. 4.00
  • C. 1.75
  • D. 1.00
View Answer & Discuss WAEC 2018