MyStudyPals.com MyStudyPals.com
  • Login
  • Feed

Resources

  • 📰
    Latest School News
  • 📚
    Scholarships
  • 🎓
    JAMB Syllabus
  • 📝
    Jamb Brochure

Information

  • 🔗
    Contact US
  • 🔗
    Privacy Policy
  • 🔗
    Terms and Conditions
  • 🔗
    About US

Solve the inequality \(x^{2} – 2x \geq 3\)

  • 📑 Past Questions
  • ⌛ Take CBT exam
  • 📟 Referral
  • 🎫 Support
  • 📢 Earnings
Further Mathematics WAEC 2012

Solve the inequality \(x^{2} – 2x \geq 3\)

  • \(-1 \leq x \leq 3\)
  • \(x \geq 3\) and \(x \leq -1\) checkmark
  • \(x \geq 3\) or \(x < -1\)
  • \(-1 \leq x < 3\)

The correct answer is: B

Explanation

\(x^{2} - 2x \geq 3 \implies x^{2} - 2x - 3 \geq 0\)

\(x^{2} + x - 3x - 3 = (x + 1)(x - 3) \geq 0\) 

\(x = -1 ; x = 3\)

Check: \(x = -1  : (-1)^{2} - 2(-1)  = 1 + 2 \geq 3\)  (satisfied)

\(-1 < x < 3 : 0^{2} - 2(0) = 0 \geq 3\) (not satisfied)

\(x < -1 : (-2)^{2} - 2(-2) = 4 + 4 = 8 \geq 3\) (satisfied)

\(x = 3 : 3^{2} - 2(3) = 9 - 6 = 3 \geq 3\) (satisfied)

\(x > 3 : 4^{2} - 2(4) = 16 - 8 = 8 \geq 3\) (satisfied)

\(\therefore x^{2} - 2x \geq \text{3 is satisfied in the region x} \leq \text{-1 and x} \geq 3\) 

Previous Question Next Question

Leave A Comment

© 2025 MyStudyPals.com