Further Mathematics JAMB, WAEC, NECO AND NABTEB Official Past Questions

22

If \(V = \begin{pmatrix} -2 \\ 4 \end{pmatrix}\) and \(U = \begin{pmatrix} -1 \\ 5 \end{pmatrix}\), find \(|U + V|\).

  • A. \(3\sqrt{10}\)
  • B. \(\sqrt{82}\)
  • C. 15
  • D. \(2\sqrt{5}\)
View Answer & Discuss WAEC 2013
23

Calculate the mean deviation of 1, 2, 3, 4, 5, 5, 6, 7, 8, 9.

  • A. 2
  • B. 3
  • C. 4
  • D. 5
View Answer & Discuss WAEC 2013
24

If \(g(x) = \frac{x + 1}{x – 2}, x \neq -2\), find \(g^{-1}(2)\).

  • A. 3
  • B. 2
  • C. \(\frac{3}{4}\)
  • D. -3
View Answer & Discuss WAEC 2013
25

P and Q are the points (3, 1) and (7, 4) respectively. Find the unit vector along PQ.

  • A. \(\begin{pmatrix} 4 \\ 3 \end{pmatrix}\)
  • B. \(\begin{pmatrix} 0.6 \\ 0.8 \end{pmatrix}\)
  • C. \(\begin{pmatrix} 0.8 \\ 0.6 \end{pmatrix}\)
  • D. \(\begin{pmatrix} -0.8 \\ 0.6 \end{pmatrix}\)
View Answer & Discuss WAEC 2013
26

Two out of ten tickets on sale for a raffle draw are winning tickets. If a guest bought two tickets, what is the probability that both tickets are winning tickets?

  • A. \(\frac{1}{80}\)
  • B. \(\frac{1}{45}\)
  • C. \(\frac{1}{20}\)
  • D. \(\frac{1}{10}\)
View Answer & Discuss WAEC 2013
27

Given that \(P = \begin{pmatrix} 3 & 4 \\ 2 & x \end{pmatrix}; Q = \begin{pmatrix} 1 & 3 \\ -2 & 4 \end{pmatrix}; R = \begin{pmatrix} -5 & 25 \\ -8 & 26 \end{pmatrix}\)  and PQ = R, find the value of x.

  • A. -5
  • B. -2
  • C. 2
  • D. 5
View Answer & Discuss WAEC 2013
28

Find the upper quartile of the following scores: 41, 29, 17, 2, 12, 33, 45, 18, 43 and 5.

  • A. 45
  • B. 41
  • C. 33
  • D. 21
View Answer & Discuss WAEC 2013
29

If \(2\sin^{2}\theta = 1 + \cos \theta, 0° \leq \theta \leq 90°\), find \(\theta\).

  • A. 30°
  • B. 45°
  • C. 60°
  • D. 90°
View Answer & Discuss WAEC 2013
30

If \(s = 3i – j\) and \(t = 2i + 3j\), find \((t – 3s).(t + 3s)\).

  • A. -77
  • B. -71
  • C. -53
  • D. -41
View Answer & Discuss WAEC 2013
31

A particle is acted upon by two forces 6N and 3N inclined at an angle of 120° to each other. Find the magnitude of the resultant force.

  • A. \(18\sqrt{3}\) N
  • B. \(27\) N
  • C. \(24\) N
  • D. \(3\sqrt{3}\) N
View Answer & Discuss WAEC 2013
32

The equation of a circle is \(x^{2} + y^{2} – 8x + 9y + 15 = 0\). Find its radius.

  • A. 5
  • B. \(\frac{1}{2}\sqrt{15}\)
  • C. \(\frac{1}{2}\sqrt{85}\)
  • D. \(\sqrt{85}\)
View Answer & Discuss WAEC 2013
33

Two bodies of masses 3kg and 5kg moving with velocities 2 m/s and V m/s respectively in opposite directions collide. If they move together after collision with velocity 3.5 m/s in the direction of the 5kg mass, find the value of V.

  • A. 7.8 m/s
  • B. 6.8 m/s
  • C. 5.6 m/s
  • D. 4.6 m/s
View Answer & Discuss WAEC 2013
34

Express \(\frac{x^{2} + x + 4}{(1 – x)(x^{2} + 1)}\) in partial fractions.

  • A. \(\frac{x^{2}}{x^{2} + 1} + \frac{x + 4}{1 - x}\)
  • B. \(\frac{3}{1 - x} + \frac{2x + 1}{x^{2} + 1}\)
  • C. \(\frac{x^{2}}{1 - x} + \frac{x + 4}{x^{2} + 1}\)
  • D. \(\frac{3}{1 - x} + \frac{2x + 2}{x^{2} + 1}\)
View Answer & Discuss WAEC 2013
35

A circular ink blot on a piece of paper increases its area at the rate \(4mm^{2}/s\). Find the rate of the radius of the blot when the radius is 8mm. \([\pi = \frac{22}{7}]\).

  • A. 0.20 mm/s
  • B. 0.08 mm/s
  • C. 0.25 mm/s
  • D. 0.05 mm/s
View Answer & Discuss WAEC 2013
36

The sales of five salesgirls on a certain day are as follows; GH¢ 26.00, GH¢ 39.00, GH¢ 33.00, GH¢ 25.00 and GH¢ 37.00. Calculate the standard deviation if the mean sale is GH¢ 32.00. 

  • A. GH¢ 5.65
  • B. GH¢ 5.66
  • C. GH¢ 6.5
  • D. GH¢ 6.56
View Answer & Discuss WAEC 2013
37

Forces 50N and 80N act on a body as shown in the diagram. Find, correct to the nearest whole number, the horizontal component of the resultant force.

  • A. 13N
  • B. 43N
  • C. 57N
  • D. 95N
View Answer & Discuss WAEC 2013
38

A committee consists of 5 boys namely: Kofi, John, Ojo, Ozo and James and 3 girls namely: Rose, Ugo and Ama. In how many ways can a sub-committee consisting of 3 boys and 2 girls be chosen, if Ozo must be on the sub-committee?

  • A. 35
  • B. 30
  • C. 18
  • D. 12
View Answer & Discuss WAEC 2013
39

The function \(f : F \to R\) 

= \(f(x) = \begin{cases} 3x + 2 : x > 4 \\ 3x – 2 : x = 4 \\ 5x – 3 : x < 4 \end{cases}\). Find f(4) – f(-3).

  • A. 28
  • B. 26
  • C. -26
  • D. -28
View Answer & Discuss WAEC 2013
40

The angle subtended by an arc of a circle at the centre is \(\frac{\pi}{3} radians\). If the radius of the circle is 12cm, calculate the perimeter of the major arc.

  • A. \(4(6 + 5\pi)\)
  • B. \(4(6 + 2\pi)\)
  • C. \(4(3 + 3\pi)\)
  • D. \(4(3 + 5\pi)\)
View Answer & Discuss WAEC 2013
41

Find the coordinates of the point which divides the line joining P(-2, 3) and Q(4, 9) internally in the ratio 2 : 3.

  • A. \((5\frac{2}{3}, \frac{2}{5})\)
  • B. \((\frac{2}{5}, 5\frac{2}{5})\)
  • C. \((\frac{2}{5}, 2\frac{2}{5})\)
  • D. \((\frac{-2}{5}, 5\frac{2}{5})\)
View Answer & Discuss WAEC 2013
42

Evaluate \(\int_{0}^{2} (8x – 4x^{2}) \mathrm {d} x\).

  • A. \(-16\)
  • B. \(\frac{-16}{3}\)
  • C. \(\frac{16}{3}\)
  • D. \(16\)
View Answer & Discuss WAEC 2013