MyStudyPals.com MyStudyPals.com
  • Login
  • Feed

Resources

  • ๐Ÿ“ฐ
    Latest School News
  • ๐Ÿ“š
    Scholarships
  • ๐ŸŽ“
    JAMB Syllabus
  • ๐Ÿ“
    Jamb Brochure

Information

  • ๐Ÿ”—
    Contact US
  • ๐Ÿ”—
    Privacy Policy
  • ๐Ÿ”—
    Terms and Conditions
  • ๐Ÿ”—
    About US

A circular ink blot on a piece of paper increases its area at the rate…

  • ๐Ÿ“‘ Past Questions
  • โŒ› Take CBT exam
  • ๐Ÿ“Ÿ Referral
  • ๐ŸŽซ Support
  • ๐Ÿ“ข Earnings
Further Mathematics WAEC 2013

A circular ink blot on a piece of paper increases its area at the rate \(4mm^{2}/s\). Find the rate of the radius of the blot when the radius is 8mm. \([\pi = \frac{22}{7}]\).

  • 0.20 mm/s
  • 0.08 mm/s checkmark
  • 0.25 mm/s
  • 0.05 mm/s

The correct answer is: B

Explanation

Given: \(\frac{\mathrm d A}{\mathrm d t} = 4 mm^{2}/s\)

\(\frac{\mathrm d A}{\mathrm d t} = (\frac{\mathrm d A}{\mathrm d r})(\frac{\mathrm d r}{\mathrm d t})\)

\(A = \pi r^{2} \implies \frac{\mathrm d A}{\mathrm d r} = 2\pi r\)

\(\implies 4 = 2\pi r \times \frac{\mathrm d r}{\mathrm d t}\)

\(\frac{\mathrm d r}{\mathrm d t} = \frac{4}{2\pi r} = \frac{4 \times 7}{2 \times 22 \times 8}\)

= \(0.07954 mm/s \approxeq 0.08 mm/s\)

Previous Question Next Question

Leave A Comment

© 2025 MyStudyPals.com