MyStudyPals.com MyStudyPals.com
  • Login
  • Feed

Resources

  • 📰
    Latest School News
  • 📚
    Scholarships
  • 🎓
    JAMB Syllabus
  • 📝
    Jamb Brochure

Information

  • 🔗
    Contact US
  • 🔗
    Privacy Policy
  • 🔗
    Terms and Conditions
  • 🔗
    About US

If the points (-1, t -1), (t, t – 3) and (t – 6, 3)…

  • 📑 Past Questions
  • ⌛ Take CBT exam
  • 📟 Referral
  • 🎫 Support
  • 📢 Earnings
Further Mathematics WAEC 2014

If the points (-1, t -1), (t, t – 3) and (t – 6, 3) lie on the same straight line, find the values of t.

  • t = -2 and 3
  • t = 2 and -3
  • t = 2 and 3 checkmark
  • t = -2 and -3

The correct answer is: C

Explanation

For collinear points (points on the same line), the slopes are equal for any 2 points on the line.

Given (-1, t - 1), (t, t - 3), (t - 6, 3), 

\(slope = \frac{(t-3) - (t-1)}{t - (-1)} = \frac{3 - (t-3)}{(t-6) - t} = \frac{3 - (t-1)}{(t-6) - (-1)}\)

Taking any two of the equations above, solve for t.

\(\frac{t - 3 - t + 1}{t + 1} = \frac{6 -t}{-6}\)

\(12 = (6 - t)(t + 1)\)

\(-t^{2} + 5t + 6 - 12 = 0 \implies t^{2} - 5t + 6 = 0\)

Solving, we have t = 2 and 3. 

Previous Question Next Question

Leave A Comment

© 2025 MyStudyPals.com