MyStudyPals.com MyStudyPals.com
  • Login
  • Feed

Resources

  • 📰
    Latest School News
  • 📚
    Scholarships
  • 🎓
    JAMB Syllabus
  • 📝
    Jamb Brochure

Information

  • 🔗
    Contact US
  • 🔗
    Privacy Policy
  • 🔗
    Terms and Conditions
  • 🔗
    About US

Solve: \(4(2^{x^2}) = 8^{x}\)

  • 📑 Past Questions
  • ⌛ Take CBT exam
  • 📟 Referral
  • 🎫 Support
  • 📢 Earnings
Further Mathematics WAEC 2015

Solve: \(4(2^{x^2}) = 8^{x}\)

  • (1, 2) checkmark
  • (1, -2)
  • (-1, 2)
  • (-1, -2)

The correct answer is: A

Explanation

\(4(2^{x^2}) = 8^{x}  \equiv (2^{2})(2^{x^2}) = (2^{3})^{x}\)

\(\implies 2^{2 + x^{2}} = 2^{3x}\)

Comparing bases, we have

\(2 + x^{2} = 3x \implies x^{2} - 3x + 2 = 0\)

\(x^{2} - 2x - x + 2 = 0 \)

\(x(x - 2) - 1(x - 2) = 0\)

\((x - 1) = 0\) or \((x - 2) = 0\)

\(x = \text{1 or 2}\)

Previous Question Next Question

Leave A Comment

© 2025 MyStudyPals.com