Given that \(f : x \to x^{2}\) and \(g : x \to x + 3\), where \(x \in R\), find \(f o g(2)\).
The correct answer is: A
Explanation
\(f : x \to x^{2} ; g : x \to x + 3\)
\(g(2) = 2 + 3 = 5\)
\(f o g(2) = f(5) = 5^{2} = 25\)
Given that \(f : x \to x^{2}\) and \(g : x \to x + 3\), where \(x \in R\), find \(f o g(2)\).
\(f : x \to x^{2} ; g : x \to x + 3\)
\(g(2) = 2 + 3 = 5\)
\(f o g(2) = f(5) = 5^{2} = 25\)