MyStudyPals.com MyStudyPals.com
  • Login
  • Feed

Resources

  • 📰
    Latest School News
  • 📚
    Scholarships
  • 🎓
    JAMB Syllabus
  • 📝
    Jamb Brochure

Information

  • 🔗
    Contact US
  • 🔗
    Privacy Policy
  • 🔗
    Terms and Conditions
  • 🔗
    About US

Simplify: \(^{n}C_{r} ÷ ^{n}C_{r-1}\)

  • 📑 Past Questions
  • ⌛ Take CBT exam
  • 📟 Referral
  • 🎫 Support
  • 📢 Earnings
Further Mathematics WAEC 2015

Simplify: \(^{n}C_{r} ÷ ^{n}C_{r-1}\)

  • \(\frac{n(n-r)}{r}\)
  • \(\frac{n}{r(n-r)}\)
  • \(\frac{1}{r(n-r)}\)
  • \(\frac{n+1-r}{r}\) checkmark

The correct answer is: D

Explanation

\(^{n}C_{r} = \frac{n!}{(n-r)! r!}\)

\(^{n}C_{r - 1} = \frac{n!}{(n - (r - 1))! (r - 1)!}\)

\(^{n}C_{r} ÷ ^{n}C_{r - 1} = \frac{n!}{(n - r)! r!} ÷ \frac{n!}{(n-(r-1))!(r-1)!}\)

= \(\frac{n!}{(n-r)! r!} \times \frac{(n-(r-1)! (r-1)!}{n!}\)

= \(\frac{(n + 1 - r)! (r - 1)!}{(n - r)! r!}\)

= \(\frac{(n+1-r)(n-r)! (r-1)!}{(n-r)! r (r - 1)!}\)

= \(\frac{n + 1 - r}{r}\)

Previous Question Next Question

Leave A Comment

© 2025 MyStudyPals.com