MyStudyPals.com MyStudyPals.com
  • Login
  • Feed

Resources

  • 📰
    Latest School News
  • 📚
    Scholarships
  • 🎓
    JAMB Syllabus
  • 📝
    Jamb Brochure

Information

  • 🔗
    Contact US
  • 🔗
    Privacy Policy
  • 🔗
    Terms and Conditions
  • 🔗
    About US

Solve \(3^{2x} – 3^{x+2} = 3^{x+1} – 27\)

  • 📑 Past Questions
  • ⌛ Take CBT exam
  • 📟 Referral
  • 🎫 Support
  • 📢 Earnings
Further Mathematics WAEC 2017

Solve \(3^{2x} – 3^{x+2} = 3^{x+1} – 27\)

  • 1 or 0
  • 1 or 2 checkmark
  • 1 or -2
  • -1 or 2

The correct answer is: B

Explanation

\(3^{2x} - 3^{x+2} = 3^{x+1} - 27\)

= \((3^{x})^{2} - (3^{x}).(3^{2}) = (3^{x}).(3^{1}) - 27\)

Let \(3^{x}\) be B; we have

= \(B^{2} - 9B - 3B + 27 = B^{2} - 12B + 27 = 0\).

Solving the equation, we have B = 3 or 9.

\(3^{x} = 3\) or \(3^{x} = 9\)

\(3^{x} = 3^{1}\) or \(3^{x} = 3^{2}\)

Equating, we have x = 1 or 2.

Previous Question Next Question

Leave A Comment

© 2025 MyStudyPals.com