Given that \(f(x) = 2x^{2} – 3\) and \(g(x) = x + 1\) where \(x \in R\). Find g o f(x).
The correct answer is: A
Explanation
\(f(x) = 2x^{2} - 3; g(x) = x + 1\)
\(g o f(x) = g (2x^{2} - 3)\)
= \( 2x^{2} - 3 + 1 = 2x^{2} - 2 = 2(x^{2} - 1)\)
Given that \(f(x) = 2x^{2} – 3\) and \(g(x) = x + 1\) where \(x \in R\). Find g o f(x).
\(f(x) = 2x^{2} - 3; g(x) = x + 1\)
\(g o f(x) = g (2x^{2} - 3)\)
= \( 2x^{2} - 3 + 1 = 2x^{2} - 2 = 2(x^{2} - 1)\)