Simplify \(\frac{\sqrt{3}}{\sqrt{3} -1} + \frac{\sqrt{3}}{\sqrt{3} + 1}\)
The correct answer is: B
Explanation
\(\frac{\sqrt{3}}{\sqrt{3} - 1} + \frac{\sqrt{3}}{\sqrt{3} + 1}\)
= \(\frac{\sqrt{3}(\sqrt{3} + 1) + \sqrt{3}(\sqrt{3} - 1)}{(\sqrt{3} - 1)(\sqrt{3} + 1)}\)
= \(\frac{3 + \sqrt{3} + 3 - \sqrt{3}}{3 + \sqrt{3} - \sqrt{3} - 1}\)
= \(\frac{6}{2} = 3\)