Resolve \(\frac{3x – 1}{(x – 2)^{2}}, x \neq 2\) into partial fractions.
The correct answer is: C
Explanation
\(\frac{3x - 1}{(x - 2)^{2}} = \frac{A}{(x - 2)} + \frac{Bx}{(x - 2)^{2}}\)
\(\frac{3x - 1}{(x - 2)^{2}} = \frac{A(x - 2) + Bx}{(x - 2)^{2}}\)
Comparing, we have
\(3x - 1 = Ax - 2A + Bx \implies -2A = -1; A + B = 3\)
\(\therefore A = \frac{1}{2}; B = \frac{5}{2}\)
= \(\frac{1}{2(x - 2)} + \frac{5x}{2(x - 2)^{2}}\)