Given that w = 8i + 3j, x = 6i – 5j, y = 2i + 3j and |z| = 41. find z in the direction of w + x – 2y.
Explanation
W = 8i + 3J
X = 6i - 5J
Y = 2i + 3J
w + x - 2y = 8i + 3j + 6i - 5j - 2(2i + 3j)
= 10i - 8j
Z = \(\frac{10i - 8j}{|Z|}\)
= \(\frac{10i - 8j}{4}\)
= \(\frac{10i}{4}\)
\(\frac{8j}{4}\)
= \(\frac{5}{2}\)i - 2j