If V = plog\(_x\), (M + N), express N in terms of X, P, M and V
The correct answer is: A
Explanation
\(\frac{v}{p} = \frac{p}{p} log _x(M + N)\)
\(\log_x(M + N) = \frac{v}{p}\)
\(x^{\frac{v}{p}} = M + N\)
N = X\(^{\frac{v}{p}}\) - M
If V = plog\(_x\), (M + N), express N in terms of X, P, M and V
\(\frac{v}{p} = \frac{p}{p} log _x(M + N)\)
\(\log_x(M + N) = \frac{v}{p}\)
\(x^{\frac{v}{p}} = M + N\)
N = X\(^{\frac{v}{p}}\) - M