The position vectors of P, Q and R with respect to the origin are (4i-5j), (i+3j) and (-5i+2j) respectively. If PQRM is a parallelogram, find:
(a) the coordinates of M;
(b) the acute angle between \(\overline{PM}\) and \(\overline{PQ}\), correct to the nearest degree.
Explanation
\(\overline{PQ}\) = \(\begin{pmatrix} 1 \\ 3 \end{pmatrix}\) - \(\begin{pmatrix} 4 \\ -5 \end{pmatrix}\) = \(\begin{pmatrix} -3 \\ 8 \end{pmatrix}\)
\(\overline{MR}\) = \(\begin{pmatrix} -5 \\ 2 \end{pmatrix}\) - \(\begin{pmatrix} x \\ y \end{pmatrix}\) = \(\begin{pmatrix} -5 & -x \\ 2 & - y \end{pmatrix}\)
\(\begin{pmatrix} -3 \\ 8 \end{pmatrix}\) = \(\begin{pmatrix} -5 & -x \\ 2 & - y \end{pmatrix}\)
โ -5 - x = -3; x = -2
โ 2 - y = 8; y = -6
The coordinate of M (-2,-6)
(b) \(\overline{PM}\) = \(\overline{OM}\) - \(\overline{OP}\)
= \(\begin{pmatrix} -2 \\ -6 \end{pmatrix}\) - \(\begin{pmatrix} 4 \\ -5 \end{pmatrix}\) = \(\begin{pmatrix} -6 \\ -1 \end{pmatrix}\)
\(\overline{PQ}\) = \(\overline{OQ}\) - \(\overline{OP}\)
= \(\begin{pmatrix} 1 \\ 3 \end{pmatrix}\) - \(\begin{pmatrix} 4 \\ -5 \end{pmatrix}\) = \(\begin{pmatrix} -3 \\ 8 \end{pmatrix}\)
|\(\overline{PM}\)| = โ(-6\(^2\) + [-1\(^2\)]) = โ37
|\(\overline{PQ}\)| = โ(-3\(^2\) + 8\(^2\)) = โ73
cosร = \(\frac{PM.PQ}{|\overline{PM}||\overline{PQ}|}\)
cosร = \(\frac{[-6i - j].[-3i+8j]}{โ37 . โ73}\) = \(\frac{10}{โ2710}\)
โ ร = cos\(^{-1}\) \(\frac{10}{โ2710}\)
: ร = 78.91ยฐ โ 79ยฐ