MyStudyPals.com MyStudyPals.com
  • Login
  • Feed

Resources

  • 📰
    Latest School News
  • 📚
    Scholarships
  • 🎓
    JAMB Syllabus
  • 📝
    Jamb Brochure

Information

  • 🔗
    Contact US
  • 🔗
    Privacy Policy
  • 🔗
    Terms and Conditions
  • 🔗
    About US

Solve: \(3^{2x-2} – 28(3^{x-2}) + 3 = 0\)

  • 📑 Past Questions
  • ⌛ Take CBT exam
  • 📟 Referral
  • 🎫 Support
  • 📢 Earnings
Further Mathematics WAEC 2022

Solve: \(3^{2x-2} – 28(3^{x-2}) + 3 = 0\)

 

  • x = -2 or x = 1
  • x = 0 or x = -3
  • x = 2 or x = 1
  • x = 0 or x = 3 checkmark

The correct answer is: D

Explanation

\(3^{2x-2} - 28(3^{x-2}) + 3 = 0\)

\(\frac{3^{2x}}{3^2} - \frac{28.3^x}{3^2} + 3 = 0\)

\(\frac{3^{2x}}{9} - \frac{28.3^x}{9} + 3 = 0\)

let p = 3\(^x\)

\(\frac{p^{2}}{9} - \frac{{28p}}{9} + 3 = 0\)

multiply through by 9
p\(^2\) - 28p + 27 = 0
p\(^2\) - p - 27p + 27 = 0
p (p - 1) - 27(p - 1) = 0
(p-1)(p-27) = 0
p = 1 or 27
when p = 1
p = 3\(^x\)
3\(^x\) = 1
3\(^x\) = 3\(^0\)
x = 0
when p = 27
3x = 27
3x = 33
x = 3

 

 

 

 

 

Previous Question Next Question

Leave A Comment

© 2025 MyStudyPals.com