MyStudyPals.com MyStudyPals.com
  • Login
  • Feed

Resources

  • 📰
    Latest School News
  • 📚
    Scholarships
  • 🎓
    JAMB Syllabus
  • 📝
    Jamb Brochure

Information

  • 🔗
    Contact US
  • 🔗
    Privacy Policy
  • 🔗
    Terms and Conditions
  • 🔗
    About US

If α and β are roots of x\(^2\) + mx – n = 0, where…

  • 📑 Past Questions
  • ⌛ Take CBT exam
  • 📟 Referral
  • 🎫 Support
  • 📢 Earnings
Further Mathematics WAEC 2022

If α and β are roots of x\(^2\) + mx – n = 0, where m and n are constants, form the

equation whose roots are 1

α

and 1

β

.
  • mnx\(^2\)  - n\(^2\) x - m = 0
  • mx\(^2\)  - nx + 1 = 0
  • nx\(^2\)  - mx + 1 = 0
  • nx\(^2\)  - mx - 1 = 0 checkmark

The correct answer is: D

Explanation

x\(^2\) + mx - n = 0

a = 1, b = m, c = -n

α + β = \(\frac{-b}{a}\) = \(\frac{-m}{1}\) = -m

αβ = \(\frac{c}{a}\) = \(\frac{-n}{1}\) = -n

the roots are = \(\frac{1}{α}\) and \(\frac{1}{β}\)

sum of the roots = \(\frac{1}{α}\) + \(\frac{1}{β}\)

\(\frac{1}{α}\) + \(\frac{1}{β}\) = \(\frac{α+β}{αβ}\)

α + β = -m
αβ = -n

\(\frac{α+β}{αβ}\) = \(\frac{-m}{-n}\) → \(\frac{m}{n}\)

product of the roots = \(\frac{1}{α}\) * \(\frac{1}{β}\)

\(\frac{1}{α}\) + \(\frac{1}{β}\) = \(\frac{1}{αβ}\) → \(\frac{1}{-n}\)

x\(^2\) - (sum of roots)x + (product of roots)
x\(^2\) - ( m/n )x + ( 1/-n ) = 0
multiply through by n
nx\(^2\) - mx - 1 = 0

 

Previous Question Next Question

Leave A Comment

© 2025 MyStudyPals.com