If log\(_2^x\) = 2, evaluate log\(_x^{128}\).
The correct answer is: C
Explanation
log\(_2^x\) = 2, in index form = x = 2\(^2\) = 4
So, log\(_x^{128}\) = log\(_4^{128}\) = log\(_{2^2}^{2^7}\) = \(\frac{7}{2}\)log\(_2^2\) = \(\frac{7}{2}\)
If log\(_2^x\) = 2, evaluate log\(_x^{128}\).
log\(_2^x\) = 2, in index form = x = 2\(^2\) = 4
So, log\(_x^{128}\) = log\(_4^{128}\) = log\(_{2^2}^{2^7}\) = \(\frac{7}{2}\)log\(_2^2\) = \(\frac{7}{2}\)