MyStudyPals.com MyStudyPals.com
  • Login
  • Feed

Resources

  • πŸ“°
    Latest School News
  • πŸ“š
    Scholarships
  • πŸŽ“
    JAMB Syllabus
  • πŸ“
    Jamb Brochure

Information

  • πŸ”—
    Contact US
  • πŸ”—
    Privacy Policy
  • πŸ”—
    Terms and Conditions
  • πŸ”—
    About US

If log\(_2^x\) = 2, evaluate log\(_x^{128}\).

  • πŸ“‘ Past Questions
  • βŒ› Take CBT exam
  • πŸ“Ÿ Referral
  • 🎫 Support
  • πŸ“’ Earnings
Further Mathematics WAEC 2024

If log\(_2^x\) = 2, evaluate log\(_x^{128}\). 

  • 7
  • 2
  • \(\frac{7}{2}\) checkmark
  • \(\frac{2}{7}\)

The correct answer is: C

Explanation

log\(_2^x\) = 2, in index form = x = 2\(^2\) = 4

So, log\(_x^{128}\) = log\(_4^{128}\) = log\(_{2^2}^{2^7}\) = \(\frac{7}{2}\)log\(_2^2\) = \(\frac{7}{2}\)

 

Previous Question Next Question

Leave A Comment

© 2025 MyStudyPals.com