MyStudyPals.com MyStudyPals.com
  • Login
  • Feed

Resources

  • πŸ“°
    Latest School News
  • πŸ“š
    Scholarships
  • πŸŽ“
    JAMB Syllabus
  • πŸ“
    Jamb Brochure

Information

  • πŸ”—
    Contact US
  • πŸ”—
    Privacy Policy
  • πŸ”—
    Terms and Conditions
  • πŸ”—
    About US

The gradient of a curve is given by 3x\(^2\) – 8x + 2. If the…

  • πŸ“‘ Past Questions
  • βŒ› Take CBT exam
  • πŸ“Ÿ Referral
  • 🎫 Support
  • πŸ“’ Earnings
Further Mathematics WAEC 2024

The gradient of a curve is given by 3x\(^2\) – 8x + 2. If the curve passes through P(0, 4), find the equation of the curve.

  • y = x\(^3\) - 4x\(^2\) + 2x + 4 checkmark
  • y = x\(^3\) - 4x\(^2\) + 2x + 2
  • y = 3x\(^3\) - 4x\(^2\) + 2x + 4
  • y = 3x\(^3\) - 4x\(^2\) + 2x - 2

The correct answer is: A

Explanation

The gradient of a curve is given by 3x\(^2\) - 8x + 2. P(0, 4)

\(\frac{dy}{dx}\) = 3x\(^2\) - 8x + 2

\(\int\)\(\frac{dy}{dx}\) = \(\int\)[3x\(^2\) - 8x + 2]

y = \(\frac{3x^2}{3} - \frac{8x^2}{2} + 2x + c\)

y = x\(^3\) - 4x\(^2\) + 2x + c

x = 0, y = 4

4 =  \(\frac{3 \times 0^2}{3} - \frac{8 \times 0^2}{2} + 2 \times 0 + c\)

c = 4.

Thus, y = x\(^3\) - 4x\(^2\) + 2x + 4

Previous Question Next Question

Leave A Comment

© 2025 MyStudyPals.com