Rationalize the denominator of the given expression \(\frac{\sqrt{1 + a} – \sqrt{a}}{\sqrt{1 + a} + \sqrt{a}}\)
The correct answer is: A
Explanation
\(\frac{\sqrt{1 + a} - \sqrt{a}}{\sqrt{1 + a} + \sqrt{a}}\) = \(\frac{\sqrt{1 + a} - \sqrt{a}}{\sqrt{1 + a} + \sqrt{a}}\) x \(\frac{\sqrt{1 + a} - \sqrt{a}}{\sqrt{1 + a} - \sqrt{a}}\)
= \(\frac{\sqrt{1 + a + a}}{1 + a - a}\)
= 2a + a(1 + a)
= 1 + 2a - 2\(\sqrt{a(1 + a)}\)