Simplify \(\frac{x – y}{x^{\frac{1}{3}} – y^{\frac{1}{3}}}\)
The correct answer is: B
Explanation
\(\frac{x - y}{x^{\frac{1}{3}} - y^{\frac{1}{3}}}\)
( x - y ) = (\(x^{\frac{1}{3}})^3 - (y^{\frac{1}{3}})^3\) = (\(x^{\frac{1}{3}}\) - \(y^{\frac{1}{3}}\))(\(x^{\frac{2}{3}}\) + \(x^{\frac{1}{3}}\)\(y^{\frac{1}{3}}\) + \(y^{\frac{2}{3}}\))
SO, \(\frac{x - y}{x^{\frac{1}{3}} - y^{\frac{1}{3}}}\) = \(\frac{(x^{\frac{1}{3}} - y^{\frac{1}{3}})(x^{\frac{2}{3}} + x^{\frac{1}{3}}y^{\frac{1}{3}} + y^{\frac{2}{3}})}{x^{\frac{1}{3}} - y^{\frac{1}{3}}}\)
Common factor in numerator and denominator cancels out.
Final answer = (\(x^{\frac{2}{3}}\) + \(x^{\frac{1}{3}}\)\(y^{\frac{1}{3}}\) + \(y^{\frac{2}{3}}\))