MyStudyPals.com MyStudyPals.com
  • Login
  • Feed

Resources

  • 📰
    Latest School News
  • 📚
    Scholarships
  • 🎓
    JAMB Syllabus
  • 📝
    Jamb Brochure

Information

  • 🔗
    Contact US
  • 🔗
    Privacy Policy
  • 🔗
    Terms and Conditions
  • 🔗
    About US

Given that 3x – 5y – 3 = 0, 2y – 6x + 5 =…

  • 📑 Past Questions
  • ⌛ Take CBT exam
  • 📟 Referral
  • 🎫 Support
  • 📢 Earnings
Mathematics JAMB 1988

Given that 3x – 5y – 3 = 0, 2y – 6x + 5 = 0 the value of (x, y) is

  • (\(\frac{-1}{8}, \frac{19}{24}\))
  • 8, \(\frac{24}{19}\)
  • -8, \(\frac{24}{19}\)
  • (\(\frac{19}{24}, \frac{-1}{8}\)) checkmark

The correct answer is: D

Explanation

3x - 5y = 3, 2y - 6x = -5

-5y + 3x = 3........{i} x 2

2y - 6x = -5.........{ii} x 5

Substituting for x in equation (i)

-5y + 3(\(\frac{19}{24}\)) = 3

-5y + 3 x \(\frac{19}{24}\) = 3

-5y = \(\frac{3 - 19}{8}\)

-5 = \(\frac{24 - 19}{8}\)

= \(\frac{5}{8}\)

y = \(\frac{5}{8 \times 5}\)

y = \(\frac{-1}{8}\)

(x, y) = (\(\frac{19}{24}, \frac{-1}{8}\)
Previous Question Next Question

Leave A Comment

© 2025 MyStudyPals.com