Simplify \(\sqrt[3]{(64r^{-6})^{\frac{1}{2}}}\)
The correct answer is: B
Explanation
\(\sqrt[3]{(64r^{-6})^{\frac{1}{2}}}\)
= \(((64r^{-6})^{1/_2})^{1/_3}\)
=\((64r^{-6})^{1/_6}\)
=\(64)^{1/_6}(r^{-6})^{1/_6}\)
=2/r
Simplify \(\sqrt[3]{(64r^{-6})^{\frac{1}{2}}}\)
\(\sqrt[3]{(64r^{-6})^{\frac{1}{2}}}\)
= \(((64r^{-6})^{1/_2})^{1/_3}\)
=\((64r^{-6})^{1/_6}\)
=\(64)^{1/_6}(r^{-6})^{1/_6}\)
=2/r