If \(f(x) = 2x^2 – 5x + 3\), find f(x + 1).
The correct answer is: A
Explanation
\(f(x) = 2x^2 - 5x + 3\)
\(f(x + 1) = 2(x + 1)^2 - 5(x + 1) + 3\)
= \(2(x^2 + 2x + 1) - 5x - 5 + 3\)
= \(2x^2 + 4x + 2 - 5x - 2\)
= \(2x^2 - x\)
If \(f(x) = 2x^2 – 5x + 3\), find f(x + 1).
\(f(x) = 2x^2 - 5x + 3\)
\(f(x + 1) = 2(x + 1)^2 - 5(x + 1) + 3\)
= \(2(x^2 + 2x + 1) - 5x - 5 + 3\)
= \(2x^2 + 4x + 2 - 5x - 2\)
= \(2x^2 - x\)