Simplify \(\sqrt{48}\) – \(\frac{9}{\sqrt{3}}\) + \(\sqrt{75}\)
The correct answer is: B
Explanation
\(\sqrt{48}\) - \(\frac{9}{\sqrt{3}}\) + \(\sqrt{75}\)
Rearrange = \(\sqrt{48}\) + \(\sqrt{75}\) - \(\frac{9}{\sqrt{3}}\)
= (\(\sqrt{16}\) x \(\sqrt{3}\)) + (\(\sqrt{25}\) x \(\sqrt{3}\)) - \(\frac{9}{\sqrt{3}}\)
= 4\(\sqrt{3}\) + 5\(\sqrt{3}\) - \(\frac{9}{\sqrt{3}}\)
Rationalize \(\frac{9}{\sqrt{3}}\) \(\to\) = \(\frac{9}{\sqrt{3}}\) x \(\frac{\sqrt{3}}{\sqrt{3}}\) = 3\(\sqrt{3}\)
= 4\(\sqrt{3}\) + 5\(\sqrt{3}\) - 3\(\sqrt{3}\)
= 6\(\sqrt{3}\)