Home ยป Past Questions ยป Mathematics ยป Jamb ยป 1997 ยป Page 2
22

A chord of a circle of a diameter 42cm subtends an angle of 60o at the centre of the circle. Find the length of the mirror arc

  • A. 22cm
  • B. 44cm
  • C. 110cm
  • D. 220cm
View Answer & Discuss JAMB 1997
23

Each of the base angles of a isosceles triangle is 58ยฐ and the verticles of the triangle lie on a circle. Determine the angle which the base of the triangle subtends at the centre of the circle.

  • A. 128o
  • B. 16o
  • C. 64o
  • D. 58o
View Answer & Discuss JAMB 1997
24

Find the non-zero positive value of x which satisfies the equation \(\begin{vmatrix} x & 1 & 0 \\ 1 & x & 1 \\ 0 & 1 & x\end{vmatrix}\) = 0

  • A. 2
  • B. 4
  • C. โˆš3
  • D. โˆš2
  • E. 1
View Answer & Discuss JAMB 1997
25

Determine x + y if \(\begin{pmatrix} 2 & -3 \\ -1 & 4 \end{pmatrix}\) \(\begin{pmatrix} x \\ y \end{pmatrix}\) = \(\begin{pmatrix}-1 \\ 8 \end{pmatrix}\)

  • A. 3
  • B. 4
  • C. 7
  • D. 12
View Answer & Discuss JAMB 1997
26

If X \(\ast\) Y = X + Y – XY, find x when (x \(\ast\) 2) + (x \(\ast\) 3) = 68

  • A. 24
  • B. 22
  • C. -12
  • D. -21
View Answer & Discuss JAMB 1997
27

Two binary operations \(\ast\) and \(\oplus\) are defines as m \(\ast\) n = mn – n – 1 and m \(\oplus\) n = mn + n – 2 for all real numbers m, n.

Find the value of 3 \(\oplus\) (4 \(\ast\) 5)

  • A. 60
  • B. 57
  • C. 54
  • D. 42
View Answer & Discuss JAMB 1997
28

The nth term of a sequence is given \(3^{1 – n}\), find the sum of the first three terms of the sequence.

  • A. \(\frac{13}{9}\)
  • B. 1
  • C. \(\frac{1}{3}\)
  • D. \(\frac{1}{9}\)
View Answer & Discuss JAMB 1997
29

Sn is the sum of the first n terms of a series given by Sn = n\(^2\) – 1. Find the nth term

  • A. 4n + 1
  • B. 4n - 1
  • C. 2n + 1
  • D. 2n - 1
View Answer & Discuss JAMB 1997
30

Find the range of values of x which satisfies the inequality 12x2 < x + 1

  • A. -\(\frac{1}{4}\) < x < \(\frac{1}{3}\)
  • B. \(\frac{1}{4}\) < x < -\(\frac{1}{3}\)
  • C. -\(\frac{1}{3}\) < x < \(\frac{1}{4}\)
  • D. -\(\frac{1}{4}\) < x < - \(\frac{1}{3}\)
View Answer & Discuss JAMB 1997
31

Let f(x) = 2x + 4 and g(x) = 6x + 7 here g(x) > 0. Solve the inequality \(\frac{f(x)}{g(x)}\) < 1

  • A. x < - \(\frac{3}{4}\)
  • B. x > - \(\frac{4}{3}\)
  • C. x > - \(\frac{3}{4}\)
  • D. x > - 12
View Answer & Discuss JAMB 1997
32

Find the value of k if \(\frac{5 + 2r}{(r + 1)(r – 2)}\) expressed in partial fraction is \(\frac{k}{r – 2}\) + \(\frac{L}{r + 1}\) where K and L are constants

  • A. 3
  • B. 2
  • C. 1
  • D. -1
View Answer & Discuss JAMB 1997
33

What value of g will make the expression 4x2 – 18xy + g a perfect square?

  • A. 9
  • B. \(\frac{9y^2}{4}\)
  • C. 81y^2
  • D. \(\frac{18y^2}{4}\)
View Answer & Discuss JAMB 1997
34

Make F the subject of the formula t = \(\sqrt{\frac{v}{\frac{1}{f} + \frac{1}{g}}}\)

  • A. \(\frac{gv-t^2}{gt^2}\)
  • B. \(\frac{gt^2}{gv-t^2}\)
  • C. \(\frac{v}{\frac{1}{t^2} - \frac{1}{g}}\)
  • D. \(\frac{gv}{t^2 - g}\)
View Answer & Discuss JAMB 1997
35

Find the minimum value of X2 – 3x + 2 for all real values of x

  • A. -\(\frac{1}{4}\)
  • B. -\(\frac{1}{2}\)
  • C. \(\frac{1}{4}\)
  • D. \(\frac{1}{2}\)
View Answer & Discuss JAMB 1997
36

Solve the simultaneous equations \(\frac{2}{x} – {\frac{3}{y}}\) = 2, \(\frac{4}{x} + {\frac{3}{y}}\) = 10

  • A. x = \(\frac{3}{2}\), y = \(\frac{3}{2}\)
  • B. x = \(\frac{1}{2}\), y = \(\frac{3}{2}\)
  • C. x = \(\frac{-1}{2}\), y = \(\frac{-3}{2}\)
  • D. x = \(\frac{1}{3}\), y = \(\frac{3}{2}\)
View Answer & Discuss JAMB 1997
37

If the function f(fx) = x3 + 2x2 + qx – 6 is divisible by x + 1, find q

  • A. -5
  • B. -2
  • C. 2
  • D. 5
View Answer & Discuss JAMB 1997
38

A survey of 100 students in an institution shows that 80 students speak Hausa and 20 students speak Igbo, while only 9 students speak both language. How many students speak neither Hausa nor Igbo?

  • A. 0
  • B. 9
  • C. 11
  • D. 20
View Answer & Discuss JAMB 1997
39

If U = (s, p, i, e, n, d, o, u, r), X = (s, p, e, n, d) Y = (s, e, n, o, u), Z = (p, n, o, u, r) find X โˆฉ( Y โˆช Z)

  • A. (p, o, u, r)
  • B. (s, p, d, r)
  • C. (s, p, n, e)
  • D. (n, d, u)
View Answer & Discuss JAMB 1997
40

Find the simple interest rate percent per annum at which N1,000 accumulates to N1,240 in 3 years

  • A. 6%
  • B. 8%
  • C. 10%
  • D. 12%
View Answer & Discuss JAMB 1997
41

Simplify \(\frac{2\sqrt{3} + 3\sqrt{5}}{3\sqrt{5} – 2\sqrt{3}}\)

  • A. \(\frac{19 + 4\sqrt{25}}{11}\)
  • B. \(\frac{19 + 4\sqrt{15}}{11}\)
  • C. \(\frac{19 + 2\sqrt{15}}{11}\)
  • D. \(\frac{19 + 2\sqrt{15}}{19}\)
View Answer & Discuss JAMB 1997
42

If \(8^{\frac{x}{2}} = (2^{\frac{3}{8}})(4^{\frac{3}{4}}\)), find x

  • A. \(\frac{3}{8}\)
  • B. \(\frac{3}{4}\)
  • C. \(\frac{4}{5}\)
  • D. \(\frac{5}{4}\)
View Answer & Discuss JAMB 1997