If U = (s, p, i, e, n, d, o, u, r), X = (s, p, e, n, d) Y = (s, e, n, o, u), Z = (p, n, o, u, r) find X ∩( Y ∪ Z)
The correct answer is: C
Explanation
\(Y \cup Z\) = \({s, e, n, o, u, p, r}\)
\(X \cap (Y \cup Z)\) = \({p, e, n}\)
If U = (s, p, i, e, n, d, o, u, r), X = (s, p, e, n, d) Y = (s, e, n, o, u), Z = (p, n, o, u, r) find X ∩( Y ∪ Z)
\(Y \cup Z\) = \({s, e, n, o, u, p, r}\)
\(X \cap (Y \cup Z)\) = \({p, e, n}\)