Home ยป Past Questions ยป Mathematics ยป Jamb ยป 1998 ยป Page 2
22

If y = 243(4x + 5)-2, find \(\frac{dy}{dx}\) when x = 1

  • A. \(\frac{-8}{3}\)
  • B. \(\frac{3}{8}\)
  • C. \(\frac{9}{8}\)
  • D. -\(\frac{8}{9}\)
View Answer & Discuss JAMB 1998
23

From the top of a vertical mast 150m high., two huts on the same ground level are observed. One due east and the other due west of the mast. Their angles of depression are 60o and 45o respectively. Find the distance between the huts

  • A. 150(1 + \(\sqrt{3}\))m
  • B. 50(3 + \(\sqrt{3}\))m
  • C. 150 \(\sqrt{3}\)m
  • D. \(\frac{50}{\sqrt{3}}\)m
View Answer & Discuss JAMB 1998
24

solve the equation cos x + sin x = \(\frac{1}{cos x – sinx}\) for values of such that 0 \(\leq\) x < 2\(\pi\)

  • A. \(\frac{\pi}{2}\), \(\frac{3\pi}{2}\)
  • B. \(\frac{\pi}{3}\), \(\frac{2\pi}{3}\)
  • C. 0, \(\frac{\pi}{3}\)
  • D. 0, \(\pi\)
View Answer & Discuss JAMB 1998
25

The midpoint of the segment of the line y = 4x + 3 which lies between the x-ax 1 is and the y-ax 1 is

  • A. (\(\frac{3}{2}\), \(\frac{3}{2}\))
  • B. (\(\frac{2}{3}\), \(\frac{3}{2}\))
  • C. (\(\frac{3}{8}\), \(\frac{3}{2}\))
  • D. (-\(\frac{3}{8}\), \(\frac{3}{2}\))
View Answer & Discuss JAMB 1998
26

If the distance between the points (x, 3) and (-x, 2) is 5. Find x

  • A. 6.0
  • B. 2.5
  • C. \(\sqrt{6}\)
  • D. \(\sqrt{3}\)
View Answer & Discuss JAMB 1998
27

The locus of all points at a distance 8cm from a point N passes through points T and S. If S is equidistant from T and N, find the area of triangle STN.

  • A. 4\(\sqrt{3cm^2}\)
  • B. 16\(\sqrt{3cm^2}\)
  • C. 32cm2
  • D. 64cm2
View Answer & Discuss JAMB 1998
28

a cylindrical drum of diameter 56 cm contains 123.2 litres of oil when full. Find the height of the drum in centimeters

  • A. 12.5
  • B. 25.0
  • C. 45.0
  • D. 50.00
View Answer & Discuss JAMB 1998
29

Let = \(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\) p = \(\begin{pmatrix} 2 & 3 \\ 4 & 5 \end{pmatrix}\) Q = \(\begin{pmatrix} u & 4+u \\ -2v & v \end{pmatrix}\) be 2 x 2 matrices such that PQ = 1. Find (u, v)

  • A. (-\(\frac{5}{2}\) - 1)
  • B. (-\(\frac{5}{2}\) - \(\frac{3}{2}\))
  • C. (-\(\frac{5}{6}\) - 1)
  • D. (\(\frac{5}{2}\) - \(\frac{3}{2}\))
View Answer & Discuss JAMB 1998
30

The determinant of matrix \(\begin{pmatrix} x & 1 & 0 \\ 1-x & 2 & 3 \\ 1 & 1+x & 4\end{pmatrix}\) in terms of x is

  • A. -3x2 - 17
  • B. -3x2 + 9x - 1
  • C. 3x2 + 17
  • D. 3x2 - 9x + 5
View Answer & Discuss JAMB 1998
31

The binary operation \(\ast\) is defined by x \(\ast\) y = xy – y – x for all real values x and y. If x \(\ast\) 3 = 2\(\ast\) x, find x

  • A. -1
  • B. 4
  • C. 1
  • D. 5
View Answer & Discuss JAMB 1998
32

The identity element with respect to the multiplication shown in the diagram below is \(\begin{array}{c|c} \otimes & p & p & r & s \\ \hline p & r & p & r & p
\\ q & p & q & r & s\\ r & r & r & r & r\\ s & q & s & r & q\end{array}\)

  • A. p
  • B. q
  • C. r
  • D. s
View Answer & Discuss JAMB 1998
33

The sum of the first three terms of a geometric progression is half its sum to infinity. Find the positive common ratio of the progression.

  • A. \(\frac{1}{4}\)
  • B. \(\sqrt{\frac{3}{2}}\)
  • C. \(\frac{1}{\sqrt{3}}\)
  • D. \(\frac{1}{\sqrt{2}}\)
View Answer & Discuss JAMB 1998
34

If p + 1, 2P – 10, 1 – 4p2are three consecutive terms of an arithmetic progression, find the possible values of p

  • A. -4, 2
  • B. -3, \(\frac{4}{11}\)
  • C. -\(\frac{4}{11}\), 2
  • D. 5, -3
View Answer & Discuss JAMB 1998
35

If x is a positive real number, find the range of values for which \(\frac{1}{3x}\) + \(\frac{1}{2}\) > \(\frac{1}{4x}\)

  • A. x > -\(\frac{1}{6}\)
  • B. x > 0
  • C. 0 < x < 4
  • D. 0 < x < \(\frac{1}{6}\)
View Answer & Discuss JAMB 1998
36

Express in partial fractions \(\frac{11x + 2}{6x^2 – x – 1}\)

  • A. \(\frac{1}{3x - 1}\) + \(\frac{3}{2x + 1}\)
  • B. \(\frac{3}{3x + 1}\) - \(\frac{1}{2x - 1}\)
  • C. \(\frac{3}{3x + 1}\) - \(\frac{1}{2x - 1}\)
  • D. \(\frac{1}{3x + 1}\) + \(\frac{3}{2x - 1}\)
View Answer & Discuss JAMB 1998
37

Divide 2x\(^{3}\) + 11x\(^2\) + 17x + 6 by 2x + 1.

  • A. x2 + 5x + 6
  • B. 2x2 + 5x - 6
  • C. 2x2 + 5x + 6
  • D. x2 - 5x + 6
View Answer & Discuss JAMB 1998
38

Make \(\frac{a}{x}\) the subject of formula \(\frac{x + a}{x – a}\) = m

  • A. \(\frac{m - 1}{m + 1}\)
  • B. \(\frac{m + 1}{1 - m}\)
  • C. \(\frac{m - 1}{1 + m}\)
  • D. \(\frac{m + 1}{m - 1}\)
View Answer & Discuss JAMB 1998
39

Solve for the equation \(\sqrt{x}\) – \(\sqrt{(x – 2)}\) – 1 = 0

  • A. \(\frac{3}{2}\)
  • B. \(\frac{2}{3}\)
  • C. \(\frac{4}{9}\)
  • D. \(\frac{9}{4}\)
View Answer & Discuss JAMB 1998
40

Factorize r2 – r(2p + q) + 2pq

  • A. (r - 2q)(2r - p)
  • B. (r - p)(r + p0
  • C. (r - q)(r - 2p)
  • D. (2r - q)(r + p)
View Answer & Discuss JAMB 1998
41

When the expression pm\(^2\) + qm + 1 is divided by (m – 1), it has a remainder is 2, and when divided by (m + 1), the remainder is 4. Find p and q respectively

  • A. 2, -1
  • B. -1, 2
  • C. 3, -2
  • D. -2, 3
View Answer & Discuss JAMB 1998
42

A man is paid r naira per hour for normal work and double rate for overtime. if he does a 35-hour week which includes q hours of overtime, what is his weekly earning in naira?

  • A. r(35 + q)
  • B. q(35r - q)
  • C. q(35 + r)
  • D. r(35 + 2q)
View Answer & Discuss JAMB 1998