Evaluate ∫\(^{\pi}_{2}\)(sec2 x – tan2x)dx
The correct answer is: B
Explanation
∫\(^{\pi}_{2}\)(sec2 x - tan2x)dx∫\(^{\pi}_{2}\) dx = [X]\(^{\pi}_{2}\)
= \(\pi\) - 2 + c
when c is an arbitrary constant of integration
Evaluate ∫\(^{\pi}_{2}\)(sec2 x – tan2x)dx