MyStudyPals.com MyStudyPals.com
  • Login
  • Feed

Resources

  • 📰
    Latest School News
  • 📚
    Scholarships
  • 🎓
    JAMB Syllabus
  • 📝
    Jamb Brochure

Information

  • 🔗
    Contact US
  • 🔗
    Privacy Policy
  • 🔗
    Terms and Conditions
  • 🔗
    About US

If log\(_810\) = X, evaluate log\(_85\) in terms of X.

  • 📑 Past Questions
  • ⌛ Take CBT exam
  • 📟 Referral
  • 🎫 Support
  • 📢 Earnings
Mathematics JAMB 1999

If log\(_810\) = X, evaluate log\(_85\) in terms of X.

  • \(\frac{1}{2}\)X
  • X-\(\frac{1}{4}\)
  • X-\(\frac{1}{3}\) checkmark
  • X-\(\frac{1}{2}\)

The correct answer is: C

Explanation

\(log_810\) = X = \(log_8{2 x 5}\)

\(log_82\) + \(log_85\) = X
Base 8 can be written as \(2^3\)
\(log_82 = y\)
therefore \(2 = 8^y\)
\(y = \frac{1}{3}\)

\(\frac{1}{3} = log_82\)

taking \(\frac{1}{3}\) to the other side of the original equation

\(log_85 = X-\frac{1}{3}\)

explanation courtesy of Oluteyu and Ifechuks

Previous Question Next Question

Leave A Comment

© 2025 MyStudyPals.com