Find the value of X if \(\frac{\sqrt{2}}{x+\sqrt{2}}=\frac{1}{x-\sqrt{2}}\)
The correct answer is: A
Explanation
Start your solution by cross-multiplying,
\(\frac{\sqrt{2}}{x+\sqrt{2}}=\frac{1}{x-\sqrt{2}}\)
[x - β2] β2 = x + β2
where β2Γβ2=2
xβ2 - β2 * β2 = x + β2
then collect like terms
xβ2 - x = β2 + 2
and factorize accordingly to get the unknown.
x(β2 - 1) = β2 + 2
x = \(\frac{β2 + 2}{β2 - 1}\)
rationalize
x = \(\frac{β2 + 2}{β2 - 1}\) * \(\frac{β2 + 1}{β2 + 1}\)
x = \(\frac{β4 + β2 + 2β2 + 2}{β4 + β2 - β2 - 1}\)
x = \(\frac{2 + 3β2 + 2}{2 - 1}\)
x = \(\frac{3β2 + 4}{1}\)
x = 3β2 + 4