If tan θ = 4/3, calculate sin\(^2\) θ – cos\(^2\) θ.
The correct answer is: C
Explanation
\(\tan \theta = \frac{opposite}{adjacent} = \frac{4}{3}\)
Hyp\(^2\) = 4\(^2\) + 3\(^2\)
Hyp = 5.
\(\sin \theta = \frac{4}{5}; \cos \theta = \frac{3}{5}\)
\(\sin^{2} \theta - \cos^{2} \theta = \frac{16}{25} - \frac{9}{25}\)
= \(\frac{7}{25}\)