MyStudyPals.com MyStudyPals.com
  • Login
  • Feed

Resources

  • 📰
    Latest School News
  • 📚
    Scholarships
  • 🎓
    JAMB Syllabus
  • 📝
    Jamb Brochure

Information

  • 🔗
    Contact US
  • 🔗
    Privacy Policy
  • 🔗
    Terms and Conditions
  • 🔗
    About US

If \(\frac{9^{2x-1}}{27^{x+1}} = 1\), find the value of x.

  • 📑 Past Questions
  • ⌛ Take CBT exam
  • 📟 Referral
  • 🎫 Support
  • 📢 Earnings
Mathematics JAMB 2003

If \(\frac{9^{2x-1}}{27^{x+1}} = 1\), find the value of x.

  • 8
  • 5 checkmark
  • 3
  • 2

The correct answer is: B

Explanation

\(\frac{9^{2x - 1}}{27^{x + 1}} = 1\)

\(\implies 9^{2x - 1} = 27^{x + 1}\)

\((3^{2})^{2x - 1} = (3^{3})^{x + 1}\)

\(2(2x - 1) = 3(x + 1) \implies 4x - 2 = 3x + 3\)

\(4x - 3x = 3 + 2 \implies x = 5\)

Previous Question Next Question

Leave A Comment

© 2025 MyStudyPals.com