MyStudyPals.com MyStudyPals.com
  • Login
  • Feed

Resources

  • 📰
    Latest School News
  • 📚
    Scholarships
  • 🎓
    JAMB Syllabus
  • 📝
    Jamb Brochure

Information

  • 🔗
    Contact US
  • 🔗
    Privacy Policy
  • 🔗
    Terms and Conditions
  • 🔗
    About US

Integrate \(\frac{x^2 -\sqrt{x}}{x}\) with respect to x

  • 📑 Past Questions
  • ⌛ Take CBT exam
  • 📟 Referral
  • 🎫 Support
  • 📢 Earnings
Mathematics JAMB 2007

Integrate \(\frac{x^2 -\sqrt{x}}{x}\) with respect to x

  • \(\frac{x^2}{2}-2\sqrt{x}+K\) checkmark
  • \(\frac{2(x^2 - x)}{3x}+K\)
  • \(\frac{x^2}{2}-\sqrt{x}+K\)
  • \(\frac{(x^2 - x)}{3x}+K\)

The correct answer is: A

Explanation

\(\int \frac{x^2 -\sqrt{x}}{x} = \int \frac{x^2}{x} - \frac{x^{\frac{1}{2}}}{x}\\
\int x - x^{\frac{-1}{2}}\\
=\left(\frac{1}{2}\right)x^2 - \frac{x^{\frac{1}{2}}}{\frac{1}{2}}+K\\
=\frac{x^2}{2}-2x^{\frac{1}{2}}+K\\
=\frac{x^2}{2}-2\sqrt{x}+K\)

There is an explanation video available .

Previous Question Next Question

Leave A Comment

© 2025 MyStudyPals.com