MyStudyPals.com MyStudyPals.com
  • Login
  • Feed

Resources

  • πŸ“°
    Latest School News
  • πŸ“š
    Scholarships
  • πŸŽ“
    JAMB Syllabus
  • πŸ“
    Jamb Brochure

Information

  • πŸ”—
    Contact US
  • πŸ”—
    Privacy Policy
  • πŸ”—
    Terms and Conditions
  • πŸ”—
    About US

Find the equation of a line perpendicular to line 2y = 5x + 4 which…

  • πŸ“‘ Past Questions
  • βŒ› Take CBT exam
  • πŸ“Ÿ Referral
  • 🎫 Support
  • πŸ“’ Earnings
Mathematics JAMB 2011

Find the equation of a line perpendicular to line 2y = 5x + 4 which passes through (4, 2).

  • 5y - 2x -18 = 0
  • 5y + 2x - 18 = 0 checkmark
  • 5y - 2x + 18 = 0
  • 5y + 2x - 2 = 0

The correct answer is: B

Explanation

2y = 5x + 4 (4, 2)

y = \(\frac{5x}{2}\) + 4 comparing with

y = mx + e

m = \(\frac{5}{2}\)

Since they are perpendicular

m1m2 = -1

m2 = \(\frac{-1}{m_1}\) = -1

\(\frac{5}{2}\) = -1 x \(\frac{2}{5}\)

The equator of the line is thus

y = mn + c (4, 2)

2 = -\(\frac{2}{5}\)(4) + c

\(\frac{2}{1}\) + \(\frac{8}{5}\) = c

c = \(\frac{18}{5}\)


y = -\(\frac{2}{5}\)x + \(\frac{18}{5}\)

5y = -2x + 18

or 5y + 2x - 18 = 0

There is an explanation video available .

Previous Question Next Question

Leave A Comment

© 2025 MyStudyPals.com