MyStudyPals.com MyStudyPals.com
  • Login
  • Feed

Resources

  • 📰
    Latest School News
  • 📚
    Scholarships
  • 🎓
    JAMB Syllabus
  • 📝
    Jamb Brochure

Information

  • 🔗
    Contact US
  • 🔗
    Privacy Policy
  • 🔗
    Terms and Conditions
  • 🔗
    About US

Find the derivative of \(\frac {\sin\theta}{\cos\theta}\)

  • 📑 Past Questions
  • ⌛ Take CBT exam
  • 📟 Referral
  • 🎫 Support
  • 📢 Earnings
Mathematics JAMB 2011

Find the derivative of \(\frac {\sin\theta}{\cos\theta}\)

  • sec2 \(\theta\) checkmark
  • tan \(\theta\) cosec \(\theta\)
  • cosec \(\theta\)sec \(\theta\)
  • cosec2\(\theta\)

The correct answer is: A

Explanation

\(\frac {\sin\theta}{\cos\theta}\)

\(\frac{\cos \theta {\frac{d(\sin \theta)}{d \theta}} - \sin \theta {\frac{d(\cos \theta)}{d \theta}}}{\cos^2 \theta}\)

\(\frac{\cos \theta. \cos \theta - \sin \theta (-\sin \theta)}{cos^2\theta}\)

\(\frac{cos^2\theta + \sin^2 \theta}{cos^2\theta}\)

Recall that sin2 \(\theta\) + cos2 \(\theta\) = 1

\(\frac{1}{\cos^2\theta}\) = sec2 \(\theta\)

There is an explanation video available .

Previous Question Next Question

Leave A Comment

© 2025 MyStudyPals.com