If y = x sin x, find \(\frac{\delta y}{\delta x}\)
The correct answer is: D
Explanation
y = x sin xWhere u = x and v = sin x
Then \(\frac{\delta u}{\delta x}\) = 1 and \(\frac{\delta v}{\delta x}\) = cos x
By the chain rule, \(\frac{\delta y}{\delta x} = v\frac{\delta u}{\delta x} + u\frac{\delta v}{\delta x}\)
= (sin x)1 + x cos x
= sin x + x cos x
There is an explanation video available .