Given matrix M = \(\begin{vmatrix} -2 & 0 & 4 \\ 0 & -1 & 6 \\ 5 & 6 & 3 \end{vmatrix}\), find \(M^{T} + 2M\)
The correct answer is: B
Explanation
M = \(\begin{vmatrix} -2 & 0 & 4 \\ 0 & -1 & 6 \\ 5 & 6 & 3 \end{vmatrix}\)
M\(^{T}\) = \(\begin{vmatrix} -2 & 0 & 5 \\ 0 & -1 & 6\\ 4 & 6 & 3 \end{vmatrix}\)
2M = \(\begin{vmatrix} -4 & 0 & 8\\ 0 & -2 & 12\\ 10 & 12 & 6\end{vmatrix}\)
M\(^T\) + 2M = \(\begin{vmatrix} -6 & 0 & 13 \\ 0 & -3 & 18 \\ 14 & 18 & 9 \end{vmatrix}\)
There is an explanation video available .