If \(4\sin^2 x – 3 = 0\), find the value of x, when 0° \(\leq\) x \(\leq\) 90°
The correct answer is: C
Explanation
\(4\sin^2 x - 3 = 0\)
\(4 \sin^2 x = 3 \implies \sin^2 x = \frac{3}{4}\)
\(\sin x = \frac{\sqrt{3}}{2}\)
\(\therefore x = \sin^{-1} (\frac{\sqrt{3}}{2})\)
x = 60°
There is an explanation video available .