MyStudyPals.com MyStudyPals.com
  • Login
  • Feed

Resources

  • πŸ“°
    Latest School News
  • πŸ“š
    Scholarships
  • πŸŽ“
    JAMB Syllabus
  • πŸ“
    Jamb Brochure

Information

  • πŸ”—
    Contact US
  • πŸ”—
    Privacy Policy
  • πŸ”—
    Terms and Conditions
  • πŸ”—
    About US

\(\frac{d}{dx} [\log (4x^3 – 2x)]\) is equal to

  • πŸ“‘ Past Questions
  • βŒ› Take CBT exam
  • πŸ“Ÿ Referral
  • 🎫 Support
  • πŸ“’ Earnings
Mathematics JAMB 2019

\(\frac{d}{dx} [\log (4x^3 – 2x)]\) is equal to

  • \(\frac{12x - 2}{4x^2}\)
  • \(\frac{43x^2 - 2x}{7x}\)
  • \(\frac{4x^2 - 2}{7x + 6}\)
  • \(\frac{12x^2 - 2}{4x^3 - 2x}\) checkmark

The correct answer is: D

Explanation

\(\frac{d}{dx} [\log (4x^3 - 2x)]\) ... (1)

Let u = 4x\(^3\) - 2x.

\(\frac{\mathrm d}{\mathrm d x} (\log (4x^3 - 2x)) = (\frac{\mathrm d}{\mathrm d u})(\frac{\mathrm d u}{\mathrm d x})\)

\(\frac{\mathrm d}{\mathrm d u} (\log u)\) = \(\frac{1}{u}\)

\(\frac{\mathrm d u}{\mathrm d x} = 12x^2 - 2\)

\(\therefore \frac{d}{dx} [\log (4x^3 - 2x)] = \frac{12x^2 - 2}{u}\)

= \(\frac{12x^2 - 2}{4x^3 - 2x}\)

 

 

There is an explanation video available .

Previous Question Next Question

Leave A Comment

© 2025 MyStudyPals.com