If sin θ = – \(\frac{3}{5}\) and θ lies in the third quadrant, find cos θ
The correct answer is: D
Explanation
Where sin θ = \(\frac{opp}{hyp}\) → \(\frac{-3}{5}\)
opp = -3, hyp = 5
using pythagoras formula
hyp\(^2\) = adj\(^2\) + opp\(^2\)
adj\(^2\) = hyp\(^2\) - opp\(^2\)
adj\(^2\) = 5\(^2\) - 3\(^2\) → 25 - 9
adj\(^2\) = 16
adj = 4
cos θ = \(\frac{adj}{hyp}\) → \(\frac{4}{5}\)
In third quadrant: cos θ is negative → - \(\frac{4}{5}\)
There is an explanation video available .