MyStudyPals.com MyStudyPals.com
  • Login
  • Feed

Resources

  • πŸ“°
    Latest School News
  • πŸ“š
    Scholarships
  • πŸŽ“
    JAMB Syllabus
  • πŸ“
    Jamb Brochure

Information

  • πŸ”—
    Contact US
  • πŸ”—
    Privacy Policy
  • πŸ”—
    Terms and Conditions
  • πŸ”—
    About US

find the limit of y = \(\frac{x^3 + 6x – 7}{x-1}\) as x tends to…

  • πŸ“‘ Past Questions
  • βŒ› Take CBT exam
  • πŸ“Ÿ Referral
  • 🎫 Support
  • πŸ“’ Earnings
Mathematics JAMB 2022

find the limit of y = \(\frac{x^3 + 6x – 7}{x-1}\) as x tends to 1

  • 9 checkmark
  • 8
  • 0
  • 7

The correct answer is: A

Explanation

\(\frac{x^3 + 6x - 7}{x-1}\):

When numerator is differentiated β†’ 3x\(^2\) + 6  

When denominator is differentiated β†’ 1

: \(\frac{3x^2 + 6}{1}\)

substitute x for 1

 \(\frac{3 * 1^2 + 6}{1}\) =  \(\frac{3 + 6}{1}\) 

=  \(\frac{9}{1}\)

= 9

There is an explanation video available .

Previous Question Next Question

Leave A Comment

© 2025 MyStudyPals.com