MyStudyPals.com MyStudyPals.com
  • Login
  • Feed

Resources

  • πŸ“°
    Latest School News
  • πŸ“š
    Scholarships
  • πŸŽ“
    JAMB Syllabus
  • πŸ“
    Jamb Brochure

Information

  • πŸ”—
    Contact US
  • πŸ”—
    Privacy Policy
  • πŸ”—
    Terms and Conditions
  • πŸ”—
    About US

Differentiate the function y = \(\sqrt[3]{x^2}(2xΒ – x^2)\)

  • πŸ“‘ Past Questions
  • βŒ› Take CBT exam
  • πŸ“Ÿ Referral
  • 🎫 Support
  • πŸ“’ Earnings
Mathematics JAMB 2023

Differentiate the function y = \(\sqrt[3]{x^2}(2x – x^2)\)

  • \(\frac {dy}{dx} = \frac {10x^{5/3}}{3} - \fracΒ {8x^{2/3}}{3}\)
  • \(\frac {dy}{dx} = \frac {10x^{2/3}}{3} - \fracΒ {8x^{5/3}}{3}\) checkmark
  • \(\frac {dy}{dx} = \frac {10x^{5/3}}{3} - \frac {8x^{5/3}}{3}\)
  • \(\frac {dy}{dx} = \frac {10x^{2/3}}{3} - \frac {8x^{2/3}}{3}\)

The correct answer is: B

Explanation

y = \(\sqrt[3]{x^2(2x - x^2)} = x^{2/3} (2x - x^2)\)

= \(2x^{5/3} - x^{8/3}\)

Now, we can differentiate the function

\(\therefore \frac {dy}{dx} = \frac {10x^{2/3}}{3} - \frac {8x^{5/3}}{3}\)

There is an explanation video available .

Previous Question Next Question

Leave A Comment

© 2025 MyStudyPals.com