Make q the subject of the relation t = \(\sqrt{(\frac{pq}{r} – r^2q)}\)
The correct answer is: A
Explanation
t = \(\sqrt{(\frac{pq}{r} - r^2q)}\)
Take the square of both sides
t\(^2\) = \(\frac{pq}{r}\) - r\(^2\)q
t\(^2\) = \(\frac{pq - r^3q}{r}\)
cross multiply
rt\(^2\) = pq - r\(^3\)q = q(p - r\(^3\))
q = \(\frac{rt^2}{p - r^3}\)
There is an explanation video available .