(\(\sqrt{a} +\sqrt{8a})^2\) = 54 + b\(\sqrt{2}\), a and b are positive integers. Find the value of a and the value of b.
The correct answer is: C
Explanation
(\(\sqrt{a} +\sqrt{8a})^2\) = 54 + b\(\sqrt{2}\)
(\(\sqrt{a} + \sqrt{8a}\))(\(\sqrt{a} + \sqrt{8a}\))
a + 4a\(\sqrt{2} + 8a = 54 + b\sqrt{2}\)
9a + 4a\(\sqrt{2}\) = 54 + b\(\sqrt{2}\)
comparing both sides
9a = 54, so that a = 6
4a = b
b = 4 x 6 = 24.
There is an explanation video available .