Home Β» Past Questions Β» Mathematics Β» Page 226
4726

Let P = {1, 2, u, v, w, x}; Q = {2, 3, u, v, w, 5, 6, y} and R = {2, 3, 4, v, x, y}.

Determine (P-Q) ∩ R

  • A. {1, x}
  • B. {x y}
  • C. {x}
  • D. ΙΈ
View Answer & Discuss JAMB 2000
4727

If the minimum value of y = 1 + hx – 3x2 is 13, find h.

  • A. 13
  • B. 12
  • C. 11
  • D. 10
View Answer & Discuss JAMB 1999
4728

Find the value of x for which the function y = x3 – x has a minimum value.

  • A. \(-\sqrt{3}\)
  • B. \(-\sqrt{\frac{3}{3}}\)
  • C. \(\sqrt{\frac{3}{3}}\)
  • D. \(\sqrt{3}\)
View Answer & Discuss JAMB 1999
4729

Evaluate \(\int^{1}_{-2}(x-1)^{2}dx\)

  • A. \(\frac{-10}{3}\)
  • B. 7
  • C. 9
  • D. 11
View Answer & Discuss JAMB 1999
4730

What is the derivative of t2 sin (3t – 5) with respect to t?

  • A. 6t cos (3t - 5)
  • B. 2t sin (3t - 5) - 3t2 cos (3t - 5)
  • C. 2t sin (3t - 5) + 3t2 cos (3t - 5)
  • D. 2t sin (3t - 5) + t2 cos 3t
View Answer & Discuss JAMB 1999
4731

Find the volume of solid generated when the area enclosed by y = 0, y = 2x, and x = 3 is rotated about the x-axis.

  • A. 81 Ο€ cubic units
  • B. 36 Ο€ cubic units
  • C. 18 Ο€ cubic units
  • D. 9 Ο€ cubic units
View Answer & Discuss JAMB 1999
4732

Evaluate: \(\int^{z}_{0}(sin x – cos x) dx \hspace{1mm}

Where\hspace{1mm}letter\hspace{1mm}z = \frac{\pi}{4}. (\pi = pi)\)

  • A. \(\sqrt{2 +1}\)
  • B. \(\sqrt{2 }-1\)
  • C. \(-\sqrt{2 }-1\)
  • D. \(1-\sqrt{2}\)
View Answer & Discuss JAMB 1999
4733

Find the area bounded by the curve y = x(2-x). The x-axis, x = 0 and x = 2.

  • A. 4 sq units
  • B. 2 sq units
  • C. \(\frac{4}{3}sq\hspace{1 mm}units\)
  • D. \(\frac{1}{3}sq\hspace{1 mm}units\)
View Answer & Discuss JAMB 1999
4734

Find the equation of the locus of a point P(x,y) such that PV = PW, where V = (1,1) and W = (3,5)

  • A. 2x + 2y = 9
  • B. 2x + 3y = 8
  • C. 2x + y = 9
  • D. x + 2y = 8
View Answer & Discuss JAMB 1999
4735

From a point P, the bearings of two points Q and R are N670W and N230E respectively. If the bearing of R from Q is N680E and PQ = 150m, calculate PR

  • A. 120m
  • B. 140m
  • C. 150m
  • D. 160m
View Answer & Discuss JAMB 1999
4736

Find the tangent to the acute angle between the lines 2x + y = 3 and 3x – 2y = 5.

  • A. -7/4
  • B. 7/8
  • C. 7/4
  • D. 7/2
View Answer & Discuss JAMB 1999
4737

In βˆ†MNO, MN = 6 units, MO = 4 units and NO = 12 units. If the bisector of angle M meets NO at P, calculate NP.

  • A. 4.8 units
  • B. 7.2 units
  • C. 8.0 units
  • D. 18.0 units
View Answer & Discuss JAMB 1999
4738

A man 1.7m tall observes a bird on top of a tree at an angle of 30Β°. if the distance between the man’s head and the bird is 25m, what is the height of the tree?

  • A. 26.7m
  • B. 14.2m
  • C. \(1.7+(25\frac{\sqrt{3}}{3}m\)
  • D. \(1.7+(25\frac{\sqrt{2}}{2}m\)
View Answer & Discuss JAMB 1999
4739

Find a positive value of \(\alpha\) if the coordinate of the centre of a circle x\(^2\) + y\(^2\) – 2\(\alpha\)x + 4y – \(\alpha\) = 0 is (\(\alpha\), -2) and the radius is 4 units.

  • A. 1
  • B. 2
  • C. 3
  • D. 4
View Answer & Discuss JAMB 1999
4740

Divide 4x\(^3\) – 3x + 1 by 2x – 1

  • A. 2x2-x+1
  • B. 2x2-x-1
  • C. 2x2+x+1
  • D. 2x2+x-1
View Answer & Discuss JAMB 1999
4741

The first term of a geometric progression is twice its common ratio. Find the sum of the first two terms of the G.P if its sum to infinity is 8.

  • A. 8/5
  • B. 8/3
  • C. 72/25
  • D. 56/9
View Answer & Discuss JAMB 1999
4742

Express \(\frac{1}{x^{3}-1}\) in partial fractions

  • A. \(\frac{1}{3}(\frac{1}{x - 1} - \frac{(x + 2)}{x^{2} + x + 1})\)
  • B. \(\frac{1}{3}(\frac{1}{x - 1} - \frac{x - 2}{x^{2} + x + 1})\)
  • C. \(\frac{1}{3}(\frac{1}{x - 1} - \frac{(x - 2)}{x^{2} + x + 1})\)
  • D. \(\frac{1}{3}(\frac{1}{x - 1} - \frac{(x - 1)}{x^{2} - x - 1})\)
View Answer & Discuss JAMB 1999
4743

Three consecutive positive integers k, l and m are such that l\(^2\) = 3(k+m). Find the value of m.

  • A. 4
  • B. 5
  • C. 6
  • D. 7
View Answer & Discuss JAMB 1999
4744

Tope bought X oranges at N5.00 each and some mangoes at N4.00 each. if she bought twice as many mangoes as oranges and spent at least N65.00 and at most N130.00, find the range of values of X.

  • A. 4≀X≀5
  • B. 5≀X≀8
  • C. 5≀X≀10
  • D. 8≀X≀10
View Answer & Discuss JAMB 1988
4745

Factorize completely \(x^{2} + 2xy + y^{2} + 3x + 3y – 18\).

  • A. (x+y+6)(x+y-3)
  • B. (x-y-6)(x-y+3)
  • C. (x-y+6)(x-y-3)
  • D. (x+y-6)(x+y+3)
View Answer & Discuss JAMB 1999
4746

A binary operation * is defined by a*b = ab+a+b for any real number a and b. if the identity element is zero, find the inverse of 2 under this operation.

  • A. 2/3
  • B. 1/2
  • C. -1/2
  • D. -2/3
View Answer & Discuss JAMB 1999