MyStudyPals.com MyStudyPals.com
  • Login
  • Feed

Resources

  • 📰
    Latest School News
  • 📚
    Scholarships
  • 🎓
    JAMB Syllabus
  • 📝
    Jamb Brochure

Information

  • 🔗
    Contact US
  • 🔗
    Privacy Policy
  • 🔗
    Terms and Conditions
  • 🔗
    About US

Find the product xy if, x, 3/2, 6/7, y are in G.P

  • 📑 Past Questions
  • ⌛ Take CBT exam
  • 📟 Referral
  • 🎫 Support
  • 📢 Earnings
Mathematics WAEC 1988

Find the product xy if, x, 3/2, 6/7, y are in G.P

  • 24/49
  • 4/7
  • 9/7 checkmark
  • 7/4
  • 21/8

The correct answer is: C

Explanation

In GP, when you are given three consecutive terms, say f, g, h, then

\(f \times h = g^2\)

Given: \(x, \frac{3}{2}, \frac{6}{7}, y\), then

\(\frac{6x}{7} = (\frac{3}{2})^2 \implies \frac{6x}{7} = \frac{9}{4} ... (i)\)

Also, \(\frac{3y}{2} = (\frac{6}{7})^2 \implies \frac{3y}{2} = \frac{36}{49} ... (ii)\)

From \(\frac{6x}{7} = \frac{9}{4} \implies x = \frac{9 \times 7}{6 \times 4}\)

\(x = \frac{21}{8}\)

Also, \(\frac{3y}{2} = \frac{36}{49} \implies y = \frac{2 \times 36}{3 \times 49}\)

= \(\frac{24}{49}\)

\(xy = \frac{21}{8} \times \frac{24}{49} = \frac{9}{7}\)

Previous Question Next Question

Leave A Comment

© 2025 MyStudyPals.com