State the fifth and seventh terms of the sequence \(-2, -3, -4\frac{1}{2}, …\)
The correct answer is: A
Explanation
\(-2, -3, -4\frac{1}{2}, ...\)
This is a G.P with r = 1\(\frac{1}{2}\).
\(T_{n} = ar^{n - 1}\) (terms of a G.P)
\(T_{5} = (-2)(\frac{3}{2})^{5 - 1}\)
= \(-2 \times \frac{81}{16}\)
= \(-\frac{81}{8}\)
\(T_{7} = (-2)(\frac{3}{2})^{7 - 1}\)
= \(-2 \times \frac{729}{64}\)
= \(-\frac{729}{32}\)