Find the value of t for which \(\frac{64}{27} = (\frac{3}{4})^{t – 1}\)
The correct answer is: B
Explanation
\(\frac{64}{27} = (\frac{3}{4})^{t-1}\)
\((\frac{3}{4})^t = \frac{64}{27} \times \frac{3}{4} = \frac{16}{9}\)
\((\frac{3}{4})^t = (\frac{9}{16})^{-1}\)
\((\frac{3}{4})^t = (\frac{3}{4})^{-2}\)
t = -2